Flexible Bayesian survival modeling with semiparametric time-dependent and shape-restricted covariate effects.

نویسندگان

  • Thomas A Murray
  • Brian P Hobbs
  • Daniel J Sargent
  • Bradley P Carlin
چکیده

Presently, there are few options with available software to perform a fully Bayesian analysis of time-to-event data wherein the hazard is estimated semi- or non-parametrically. One option is the piecewise exponential model, which requires an often unrealistic assumption that the hazard is piecewise constant over time. The primary aim of this paper is to construct a tractable semiparametric alternative to the piecewise exponential model that assumes the hazard is continuous, and to provide modifiable, user-friendly software that allows the use of these methods in a variety of settings. To accomplish this aim, we use a novel model formulation for the log-hazard based on a low-rank thin plate linear spline that readily facilitates adjustment for covariates with time-dependent and proportional hazards effects, possibly subject to shape restrictions. We investigate the performance of our model choices via simulation. We then analyze colorectal cancer data from a clinical trial comparing the effectiveness of two novel treatment regimes relative to the standard of care for overall survival. We estimate a time-dependent hazard ratio for each novel regime relative to the standard of care while adjusting for the effect of aspartate transaminase, a biomarker of liver function, that is subject to a non-decreasing shape restriction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexible Bayesian survival modeling with nonparametric time-dependent and shape-restricted covariate effects

Presently, there are few options with readily available software to perform a fully Bayesian analysis of time-to-event data wherein the hazard is estimated nonparametrically. One option is the piecewise exponential model, which requires an often unrealistic assumption that the hazard is piecewise constant over time. The primary aim of this paper is to construct a tractable nonparametric alterna...

متن کامل

Bayesian Semiparametric Methods for Longitudinal, Multivariate, and Survival Data

MICHAEL LINDSEY PENNELL: BAYESIAN SEMIPARAMETRIC METHODS FOR LONGITUDINAL, MULTIVARIATE, AND SURVIVAL DATA. (Under the direction of Dr. David Dunson.) In many biomedical studies, the observed data may violate the assumptions of standard parametric methods. In these situations, Bayesian methods are appealing since nonparametric priors, such as the Dirichlet process (DP), can incorporate a priori...

متن کامل

Bayesian semiparametric multi-state models

Multi-state models provide a unified framework for the description of the evolution of discrete phenomena in continuous time. One particular example are Markov processes which can be characterised by a set of time-constant transition intensities between the states. In this paper, we will extend such parametric approaches to semiparametric models with flexible transition intensities based on Bay...

متن کامل

A Bayesian semiparametric latent variable model for mixed responses

In this article we introduce a latent variable model (LVM) for mixed ordinal and continuous responses, where covariate effects on the continuous latent variables are modelled through a flexible semiparametric predictor. We extend existing LVM with simple linear covariate effects by including nonparametric components for nonlinear effects of continuous covariates and interactions with other cova...

متن کامل

A Bayesian semiparametric latent variable model for mixed responses

In this article we introduce a latent variable model (LVM) for mixed ordinal and continuous responses, where covariate effects on the continuous latent variables are modelled through a flexible semiparametric predictor. We extend existing LVM with simple linear covariate effects by including nonparametric components for nonlinear effects of continuous covariates and interactions with other cova...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bayesian analysis

دوره 11 2  شماره 

صفحات  -

تاریخ انتشار 2016